Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12.
نویسندگان
چکیده
Garnet-type cubic Li7La3Zr2O12 exhibits one of the highest lithium-ion conductivity values amongst oxides (up to ∼2 mS cm-1 at room temperature). This compound has also emerged as a promising candidate for solid electrolytes in all-solid-state lithium batteries, due to its high ionic conductivity, good chemical stability against lithium metal, and wide electrochemical stability window. Defect chemistry of this class of materials, although less studied, is critical to the understanding of the nature of ionic conductivity and predicting the properties of grain boundaries and heterogeneous solid interfaces. In this study, the electrical properties of nominally undoped cubic Li7La3Zr2O12 are characterized as a function of temperature and pO2 using a suite of AC impedance and DC polarization techniques. The formation of ionic defects and defect pairs as well as their impact on the transport properties are discussed, and a Brouwer-type diagram is constructed.
منابع مشابه
Effects of Al Doping on the Properties of Li7La3Zr2O12 Garnet Solid Electrolyte Synthesized by Combustion Sol-gel Method
Li7La3Zr2O12 (LLZO) garnets are one of the promising materials as electrolytes for solid-state batteries. In this study, Li7-3xAlxLa3Zr2O12 (x= 0.22, 0.25, and 0.28) garnet is synthesized using the combustion sol-gel method to stabilize the cubic phase for higher ionic conductivity. The X-ray diffraction (XRD) results of as-synthesized powders reveal that by addition of 0.22 and 0.25 mole Al, t...
متن کاملFast Li-Ion-Conducting Garnet-Related Li7–3xFexLa3Zr2O12 with Uncommon I4̅3d Structure
Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction of the garnet-type Ia3̅d structure, which is the most commonly found space group of Li oxide garne...
متن کاملStructural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes
Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high i...
متن کاملExperimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12.
The evolution of the Li-ion displacements in the 3D interstitial pathways of the cubic garnet-type Li(7)La(3)Zr(2)O(12), cubic Li(7)La(3)Zr(2)O(12), was investigated with high-temperature neutron diffraction (HTND) from RT to 600 °C; the maximum-entropy method (MEM) was applied to estimate the Li nuclear-density distribution. Temperature-driven Li displacements were observed; the displacements ...
متن کاملLow-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets
The application of Li7La3Zr2O12 as a Li + solid electrolyte is hampered by the lack of a reliable procedure to obtain and densify the fast-ion conducting cubic garnet polymorph. Dense cubic Li7La3Zr2O12-type phases are typically formed as a result of Al-incorporation in an unreliable reaction with the alumina crucible at elevated temperatures of up to 1230 C. High Al-incorporation levels are al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2018